AVEIS)£...
SV,

Universitat Potsdam

Institut fir Informatik
Lehrstuhl Maschinelles Lernen

- D
< 58

Q’am
‘ e

Intelligente Datenanalyse
Intelligent Data Analysis

Tobias Scheffer, Gerrit Gruben, Nuno Marquez

Plan for this lecture

= Introduction to Python

= Main goal is to present you a subset of the
language and libraries to make you able to tackle
Machine Learning challenges with Python.

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

Overview

= What is Python?

Python is an open general purpose language that is
widely used in scientific computing and machine
learning.

Rich ecosystem of libraries for scientific computation.
NumPy for linear algebra, scikit-learn for general
Machine Learning, Apache Spark for distributed ML
and so on.

=1
—
i
5
@
-
—
@
O
D
—+
@
S
Y
S
=
<
&
9

Python

= Python is dynamically typed, that means that the
type of an expression is unknown before evaluation
time. (but there are types!).

= Weirdest thing: blocks are given by the indentation
(usually TAB).

= Supports basic notions of object-orientation and
functional programming “well enough”.

= We use Python 2.7 in the lecture. Python 3.5 is the
latest version, but not every library supports Python
3+.

=1
—
i
5
@
-
—
@
O
D
—+
@
S
Y
S
=
<
&
9

Python Basics |

= Hello World:

print “Hello, World!”

= Variables:
x = 5
print x
print type (x)
print “x = “ + x # does not work
print “x = “ + str(x)

s Arithmetic:
x = 0.5

\

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

print y**2 + x # y? 4+ x
print vy / x

print v / z
print float(y) / =z
print int (x)

Python Basics I

= Boolean algebra:

=

winter = True i
rain = False ‘8
snow = winter and rain %
print snow v,
summer = not winter %
: S
print summer | | %
bad weather = winter or rain D
print bad weather 7
o o))

= Comparison operators:

print 5 == 3 # note that = is an assignment

print 3 < 4

print 2+2 == 5 and True

print 4 $ 3 == 0 # a % b is remainder of integer division
of a by b

Python Basics Il

= Functions (notice the indentation!):

=1
def square plus(x, y): 2
print ‘square with x = ' 4+ str(x) + ‘ evaluated’ =
return x*x + y %
print square plus (3, 1) 8
s Call-by-?77?: >
def set to(x, value): 5
print 'x set to ' + str(value) ‘5
X = value ®

y = 9

set to(y, square plus (2, 0)) # what happens in which
order here

did the original y change?

print y

Python Basics IV

= If (run specific code only if a condition is met):
def abs (x):
if x < 0O:
return -x
return x
print abs(3), abs(-5)

= While (run code while some condition is met prior to

each run)
i =14
while 1 >= 0:
print 1
i -=1# equal to 1 =1 - 1

= For (run code for each object in an ordered
seguence as a parameter)

for 1 in range(5):
print 1
for ¢ in “wWow!”:
print c 8

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

Python Basics V

= Recursion (calling itself-itself-itself-...):

return n * factorial (n-1)

=]

@

=

def factorial(n): g
—+

. @
1f n ==)
return 1 %
else: 8
S

Q

<

)

@

print factorial (42)

Python Basics VI

= Atest: find a good name for the following function

=]
@
5
def what am i (n): o
i =0 @
O
>
while 1 < n: g
Str — W7 %
QL
o <
for 7 in range (n): 4
if jJ == 1 or jJ == n-1-1:
str += “*x7
else:
str += Y
print str
i +=1

10

Python Basics VIl

= Modules: Every file (or directory with _init_.py)

import math

print math.sin (3)
print math.factorial (10)

from math import sin, cos, exp
print sin(3)**2 + cos(3)**2
print exp(1l)

s Other module: random numbers

from random import *

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

print random() # 0 to 1 uniform

print randrange(10) # integer O, 1, .., 9
print uniform(-0.5, 0.5)

print gauss (0, 1.0) # normal distribution

s Standard modules: collections, string, itertools, os,

SYS
11

Python Basics VIl (Data Structures I

m Lists:
xs = [1, 2, 3, 4]
print xs[0]
print xs
print len(xs), sum(xs)
print [1, 2] + [3]1*2 + []
print “ab” * 3

= Mutability of lists:

some objects = []

some objects.append(“a”)
some objects.append (True)
some objects.append(3)

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

print some objects[0]
print some objects

del some objects[0]
some objects.remove (3)

12

Python Basics IX (Data Structures I}

= Slicing
nums = range (20)
print nums[l'lO]
print nums([:10]
print nums[5]
print nums/(:]
print nums[10::-1]
[:10: —1]
[3:15:4]

print nums
print nums

= List comprehensions

squares = [x**2 for x in range (10)]
print squares

=1
—
@
5
M
S
—
™
O
D
—+
@
S
Y
S
D
<
&
9

pythagorean triples = [(xX, y, z) for x in range(l, 10)
for vy in range (1, 10)
for z in range(1l0) 1f x**2 4+ y**2 = z**2 and x > y]

print pythagorean triples

13

Python Basics X (Data Structures lll)

= Dictionaries (hash maps):
dictionary = {‘Eins’: 1, ‘Zwei’: 2, ‘Drei’: 3}
print ‘Eins’ in dictionary
print 1 in dictionary
del dictionary[‘Eins’]

for key, value in dictionary.items():
print ‘{}: {}’.format (key, value)

= Lambda expressions
squaring = lambda x: x**2
print squaring (3)

=1
—
@
5
M
S
—
™
O
D
—+
@
S
Y
S
D
<
&
9

14

When you are stuck

= help opens documentation.
s doc (obj) or obj? for any object obj
(commands, classes, modules)

= who, whos: lists all currently available identifiers,
latter with more detalil.

s del x:deletes x from memory.

m clear: clears output if you run Python in a
terminal.

=1
—
@
5
M
S
—
™
O
D
—+
@
S
Y
S
D
<
&
9

15

NumPy |

Stal’t W|th import numpy as np
= Input of numbers:

>> a=2

2

>> a = np.sqrt(-16 + 07)
47

= With print explicit display of value:
>> print a
43

= Or simply writing the name as last expression:

>> a
47

=1
—
i
5
@
-
—
@
O
D
—+
@
S
Y
S
=
<
&
9

16

NumPy I

= Defining a vector:
>> b = np.ndarray([2, 4, 6, 8])
[2 4 6 8]

This is a vector of length 4 (implicitly row vector)
>> b2 = b.reshape (4, 1)
>> print b.dot (b2)
array ([120])

The data lies flat (i.e. sequentially) in memory,

shape returns logical structure

>> print b.shape, b2.shape
(4,) (4, 1)

Shapes can be in any higher dimensions, ndarrays
are in fact tensors.

=1
—
@
5
M
S
—
™
O
D
—+
@
S
Y
S
D
<
&
9

17

NumPy Il

= Generate c equidistant points from interval [a, b]:

>> b2 = np.linspace(l, 3, 5)
array ([1., 1.5, 2., 2.5, 3. 1)

s Generate range as a vector:

>> b3 = np.arange (0, 10, 2)
array ([0, 2, 4, 6, 8])

=1
—
@
5
M
S
—
™
O
D
—+
@
S
Y
S
D
<
&
9

18

NumPy |V

= Input of Matrices:

>> A = np.ndarray(np.mat(‘[1 2 3; 4 5 6; 7 8 0]%'))
array ([[1, 2, 3],

(4, 5, o],

[7, 8, 011])

This results in a 3x3 matrix.
s [ranspose:

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

>> A2 = A.T

array ([[1, 4, 7],
[2/ 5’ 8]’

(3, 6, 011)

19

NumPy V

= Linear Indexing:

=1
S
>> A[0] Q’
D
array([1l, 2, 3]) ?’Dr
: _ w)
= Indexing over row and column: S
-}
>> A[1l, 2] returns 6, zero-based (row, column) -
D
= Indexing via lists and slicing: P
>> A([0,2]1,1) returns [2, 8]
>> A2, :] returns 3rd row as slice
>> Al:, 2] returns 3rd column as slice

20

NumPy VI

= Change values via assignment:

= Matrix shape can be adjusted by reshape, but
should not. Create new matrices by operators and
creators.

s Information about matrices

=1

@

>> A[2,2] = 9 S
D

A = =}
D

1 2 3 o

4 5 6 >

7 8 9 S

Q

-

QD

<<

wn

D

A.shape Dimensions, returns (3, 3) here

A.dtype Kind of scalars the matrix contains, i.e. int64, float64

21

NumPy Vil

s Commands to create matrices:

np.zeros ((n,m)) nxm matrix with only zeros
np.ones ((n,m)) nxm matrix with only ones
np.full ((n,m),c) nxm matrix with only c
np.eye (n) nxn identity matrix

= Random sampling (more at SciPy docs)

from np.random import rand, randn

rand (n,m) nxm matrix with uniform picked entries in the half-
open unit interval [0, 1)
randn (n, m) nxm matrix with normally distributed entries (zero

mean, unit std)

22

=1
—
i
5
@
-
—
@
O
D
—+
@
S
Y
S
=
<
&
9

http://docs.scipy.org/doc/numpy/reference/routines.random.html

NumPy VII

m Some constants

np.pi 3.14159...
0.+13 imaginary unit
np.inf infinity
np.nan “‘nota number”

=1
—
@
5
M
S
—
™
O
D
—+
@
S
Y
S
D
<
&
9

23

NumPy IX

= Matrix operators:

+ addition

- subtraction

np.dot matrix multiplication

~ matrix exponentiation

np.linalg.solve left division

.T transpose

.H complex-conjugated transpose
s Element-wise operators:

* element-wise multiplication

ok element-wise exponentiation

/ element-wise division

24

=1
—
1
5
@
-
—
@
O
D
—+
@
S
Y
S
L
<
&
9

NumPy X (Examples)

>> x = np.ndarray([-1, 0, 2])

array([-1, 0, 27) =
>> y = x - 1 (g.
array([-2, -1, 17]) %
>> x.T.dot (y) 8
4 z
QD
>> x.dot (y.T) 5
[adjusted output] ‘5
2 1 -1 @

0 0 0

~4 -2 2

>> y.dot (x.T)
[adjusted output]

2 0 -4
1 0 -2
-1 0 2

>> np.pli * x

array([-3.1416, 0., 6.2832]) o5

Sources

https://continuum.io — Anaconda distribution, easy to use

Installation of Python. Works well under Windows. This is also
installed for you on the computer lab’s Linux systems.

http://learnpythonthehardway.org — A gentle introduction to

Python as a general-purpose language.
https://www.edx.org — Decent (and free) online classes for

Python.

6.00.2x: Python intro with scientific/statistical approach. If
you lack CS fundamentals start with 6.00.1x.

CS190-1x: Large scale ML with Python and Spark. Labs
very cool (e.g. visualization of neuroimage data of
Jellyfishes).

26

=1
—
o
6.
®
>
—
)
O
jab)
—
®
>
)
>
L
<<
2
@D

https://continuum.io/
http://learnpythonthehardway.org/
https://www.edx.org/

More Sources

s https://qgithub.com/amueller — Wonderful collection
of tutorials for ML with Python with notebooks, you
can find accompanying videos often.

s https://github.com/parallel _ml _tutorial -- Parallel ML
with Python. Useful for quicker prototyping.

=1
—
i
5
@
-
—
@
O
D
—+
@
S
Y
S
=
<
&
9

27

https://github.com/amueller
https://github.com/parallel_ml_tutorial

